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Noise delayed decay of unstable states
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The present paper is concerned with transient phenomena near the instability points of dynamic systems. The
problem of decay of unstable states is investigated in the framework of the model of overdamped Brownian
motion. It is shown that in many physical situations the additive noise can increase the decay time of unstable
states, in contrast with accepted notions. The conditions for this effect are studied in detail. Physical examples
are considered.S1063-651X98)04203-3

PACS numbgs): 02.50.Ey, 02.50.Fz, 64.60.Cn

[. INTRODUCTION pointed out and, as in the above mentioned works, an in-
rease in the decay time with noise intensity was not de-

Time characteristics of the decay of unstable states thzi cted. Thus the problem has remained unsolved

appear in various dynamical systems have been studied in On the other hand. the effect of the noise enhanced sta-

many works(see Refs[l—lQ], and references thergirFol- bility of the unstable states was observed recently for sys-
lowing from these works, in this paper, the process of thetems driven both by stochastic and periodic forf23—26.

plecay |s.con.5|dered w_|th|n.the model of overdamped BrownHowever, these works explain the effect by the influence
ian motion in potential fields. The coordinate of the

Brownian particle is supposed to obey the following Lange-OnIy of the periodic force. .
vin equation with the additive noise source: The present work shows tha}t the decay.tlme of the un-

' stable state under some conditions can be increased consid-
erably by the external noise. In other words, the external
additive noise, in contrast to the usual notip#s 17,19, can

d_X: _ du(x) +E() (1) delay the decay of the unstable state.

dt ndx ' The results presented here are a further development and

generalization of the approach proposed in R28]. In that
work the simplest model of a piecewise linear potential pro-
where U(x) is potential,(t) is the Gaussian white noise, file, which leads to the effect of the delay, was considered. In
(&(t))=0, (&(t)é(t+7))=D5(7), D is the noise intensity, addition to Ref.[28], the influence of the potential profile
and 7 is the viscosity, which further can be taken equal toshape and initial conditions on the effect is studied in the
unity. In this paper the potential profilé$(x), which have present work. For this, the decay times of unstable states
no local minima, are considered. Such potential profiles dedescribed by the more complex potential profilpecewise
scribe the unstable states of dynamic systems. The decdimear and smoothare considered. Section Il is concerned
time of the states is defined as the mean first passage tinveith an analysis of the decay time of the unstable state de-
(MFPT) of the Brownian particle across given boundaries.scribed by a piecewise linear potential profile consisting of
This approach to define the decay time of the unstable statébree linear parts. The general conditions under which the
is widely used, because the mathematical method for obtaimoise enhances the stability of the unstable state are formu-
ing the moments of FPT distribution is well develod@®— lated. In Secs. Ill and IV, some physical examples are dis-
22]. The analysis carried in Ref$11-17 by use of the cussed. In these sections we consider smooth potential pro-
MFPT method shows that the decay time always decreasdies corresponding to the real systems. Section Il is devoted
with noise intensity. In other words, the noise was shown tdo the influence of the external noise on intermittent chaotic
accelerate the decay of any unstable state. systems. In Sec. IV we study the influence of noise on the
At the same time in the work of Hirsch, Huberman, andbifurcation transitions.

Scalapind 18], the dependence on noise intensity of the de-
cay time of an unstable state was revedladalytically and
numerically to have something of a resonant character: with

the grqwth of thg n_oise intensit), the decay time also Il. DECAY TIME OF THE UNSTABLE STATE

grows in the beginning, then reaches a maximum, and de- DESCRIBED BY THE PIECEWISE LINEAR

creases till zero unddd — . However, the increase in the POTENTIAL PROFILE

decay time obtained in Refl18] was not large(less than

1%). Moreover, in the work of Landa and Stratonovifdi9], Let us consider the following potential profile consisting

some mistakes in the theoretical part of REE8] were  of three linear partx e [ — X, Xm] (Fig. 1):
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—Kn(X=/) =K/ e, —Xp= == <X<=/¢
Ux)=9 —keX, — /o <X</ ®)
—Kkm(X+ )tk e, Lo <X<Xpy=C ¢+,

wherek. ,k,,>0 are the slopes of the central and two mar- IW(X,t) g dU(x) D &2
ginal linear intervals of the profile, and. and 7/, are the gt lax _dx 2 a2
lengths of these intervals. K;,k,,>0, this profile has no

horizontal pieces, i.e., it describes an unstable state. Using one of the above mentioned methods' one can ob-
In accordance with Eq(1), if the noise is absent, the tain an exact expression for the MFATxo,D), which un-

Brownian particle initially located at some point;e der low noise intensity, when expB.)<1 and exp{5,)

[ —Xm,Xm] will slope down to the boundary,, and will <1 whereB.=4k. /D, Bm=2Ky/m, and/m=Xm—/c

reach it in timeT(Xo). If there is noisef(t) in the system, (see Fig. 1, will have the following view:

the particle is subjected to random pushes; then the possibil-

W(x,t). 4)

ity of leaving the interval through the upper boundary ap- 0,(Xg,D), —1<Xp<-P
pears, and the tim& (x,) of the escape from the interval @(XO,D)EM= 0.Xg,D), —P<Xy<P
becomes random. Let the decay time of the unstable state be m

= . L 0,(Xy,D), P<Xp<1
the MFPT(T(Xq))=T(Xq,D) of the Brownian particle ini-

tially located in the pointx, across the boundaries of the —0(e Pmy—0(e Fe), (5)
interval [ — Xm, , Xm].-
To obtain the MFPT, one can use the well-known formulawhere

[20,22 oL
0/(Xp,D)=1—-Xo(L+1)—L+2K L+ —(2-K—-K™1)
C
2 %m ¢ 2L
T(Xo,D)=— f eu<é>f e Udde d¢ —|2+2K L+ —(2-K-K™1
D X0 —Xm BC
Xe—,Bm(L+l)(l+Xo),
fx”“ u(of ) 2L
e e "?d¢ d¢ _ 1 _1
Jxm X X fxme“@)dg 0:(Xo,D)=1+K IL—K YL+1)X,+ E(l—K)
eu(g)d X0
J_xm ¢ +&(1_ K—1)e—5c[1+xo(1+r1)]/2l
&) )
2L
where u(x)=2U(x)/D is dimensionless potential profile. 0,(Xo,D)=1+L—(L+ 1)XO+B_(1_ K)
Also one can use the method proposed in R&f], which is ¢
based on first obtaining the Laplace transform of the solution X @ AmlXo(L+1)=L]
of the Fokker-Planck equatidirPE) for the probability den-
sity W(x,t) corresponding to Eq1): The new values introduced here are as follows:/.// , is
the relative width of the central pieck,=k./k,, is the rela-
tive slope of the central piec&y=xq/Xy,, P=L/(L+1),
s u(x)=2U(x)/D m
ue=20) and timeT,= /' n/Ky,. The dependence of the decay time of
W(x.0)=8(x-x) the unstable staf€(Xy,D) [Eq. (5)] on the noise intensitp
= is contained in the valueg,,, 8.~ 1/D that characterize the
dimensionless height of the two linear parts of the potential
profile (2). It follows from Eq. (5) that if D=0 (8,= 8.
T s =), thenT(Xy,=P,0)=T,,. This means thal, is the time
: B %=tth x of the descent of the particle from the poiy=/". to the
=00, - Xy écl ’ b AN . . .
. oundaryx,,= /. + /', on the right, marginal piece of poten-
tial profile (2), of which the longitude ig",,, and the slope is
Km -
B First of all, it is necessary to note that the decay time of
the unstable statés) can be an increasing function of the
noise intensity. As one can easily see from B, if

FIG. 1. The piecewise linear potential profi@). K<1, —P<Xp<],
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FIG. 3. The piecewise linear potential profile considered in Ref.

[28].
0 Consequently, the average escape time from the interval is
FIG. 2. The dependence of the relative MFPT for the piecewise % 1 1
potential profile(2) on the dimensionless noise intensity- 1/3,, (T(a))zf r(a)W(a)da=Tp+ag P k_) (6)
underK=0.6,L=10, andP=0.9 (/.=0.%,). e c m

the derivativedT(Xo,D)/aD>0. On the other hand, it fol- WNereTm=17(0)=/"n/kw [as in Eq.(5)]. It follows from Eq.

lows from the exact expression fai(Xo,D) (which we do  (6) that, underk.=ky, (K=1), the random push does not
not adduce here, because it is huit under larg®, when  ©ffect the average escape time. Unégrky, (K>1), the

exp( 8., exp—B.)~1, the MFPT decreases aD1/Con- average escape time decreases with the increase in the am-

sequently under some noise intendlty=D* , the MFPT has plitude a,, and underk.<k,, (K<1) this time increases
a maximumT(Xo,D*)=T* (see Fig. 2 with the increase i, i.e., the greater the amplitude of the

Thus, the results obtaind@g. (5)] allow one to see the S impulse, the longer the time the particle stays within the

effect of the noise enhanced stability of the unstable statdMerval-

This effect was observed in R¢28] for a more simple kind As it was shown, for example, in Ref29], the com-
of potential profile, and under fixed initial conditions. pletely random process can be represented as a superposition

In order to understand better how this effect appears, 1c®f the & impulses. Therefore, it is evident that the appearance
us consider the system which is governed by @&, where of the effect of a noise induced increase of the unstable state

instead of the random forc(t), there is as function with a ~ deca@y time in the system described by Ef), as in the
random amplitude: above_menthned examplg, |s.due to the nonlinearity o_f the
potential profile. If the particle is on the upper and less tilted
dU(x) (k.<k.,) piece of the profile, then it is delayed there for a
T Tdx +ad(t). long time. This leads to an increase of the average escape
time from the interval. In accordance with this, the less the

In such a system the Brownian particle undergoes the onl{€lative slopeK=Kkg/ky,, and the more the relative length
random push at the moment 0. It can easily be shown that L=7¢//'m of this piece, the greater the maximum of the
the action ofé impulse leads to the shift of the initial posi- MFPT. This qualitative conclusion is confirmed by Ef).
tion of the particle on the distanee Let the distribution of Let us now discuss the influence of the initial conditions.

the amplitudew(a) be the even function. For example, one The PIot T(Xo,D)/T(X,,0) for the different valuesX,,
may take drawn in accordance with E@3), is presented in Fig. 2. It

follows from Eqgs.(3) and (5) that the maximal relation
W(a)=368(a+ay)+3d(a—ayp). T(Xq,D)/T(Xp,0) is reached under the some noise intensity
D=D*, if the diffusion is started from the pointy=/"
Initially, let this particle be at the poitXy=P (xq=/"), i.e.,  (Xo=P), which is located on the boundary of the two lowest
at the boundary of the two low linear pieces of potentialpieces of potential profil¢€2).
profile (2) (see Fig. 1 the amplitude of the impulse does not It must be mentioned that one can come to the same con-
exceed the lengths of these piecag< /', ag</. In this  clusion if one considers diffusion with arbitrary initial con-
case, ifa=—a, (at the moment=0 the particle is shifted ditions in a model potential profile consisting only of two
on the distance-a,), then the escape time from the interval linear piecegFig. 3). This potential was considered in Ref.
is equal: [28]. It can be obtained from the potential profi®), if we
remove the upper piece & — /. If we take the arbitrary
(—ag)= o . ﬁ initial conditionsx, in the problem with such a “shortened”
" ke Km' potential, we obtain the expression for the MFP{X,,D)
which coincides with Eq(5) under the small noise intensity
If a=a,, then D [when expfB.), exp(-Bn<l]. Taking into account the
fact that the effect of the increase of the MFPT by noise is
observed under low noise intensity, we may conclude that
the piece of the potential profile under —/;. does not

X=

/ —
(ag) = 0",
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influence the main characteristics of the effect. Thus, if one Uind(X) = — Ax—BX?, 8
changes the slope and the length of this piece arbitrarily, it
will not influence the characteristics of the effect. wherez=2n+1, n=1,2,3..., A>0, andB>0. For the

The value of the noise intensi* corresponding to the case of the logistic maf¥), A=R,— R, B=68.5, andz=3.
maximum value of MFPT approximately may be estimated The diffusion of the Brownian particle in the potential
as follows: field (8) in the intervalx e[ —Xm,Xy] (the valuex,, should
satisfy A+zB>§;l<1) corresponds to the laminar phase.
The escape of the Brownian particle from the interval corre-
sponds to the transition of the system into the chaotic regime.

whereU.=k./ ¢, Un=Kkn/m. TO obtain the exact expres-
sion for D* is extremely difficult, because of the mathemat- 1 'US the MFPT across the boundariesxy x| character-
zes the APL[18].

ics. Thus one can distinguish the following main features of . _ I .
In the problem of the intermittency, the initial poixg is

the effect of the noise enhanced stability of unstable states, , ) "
(1) In order for the effect to arise, at least two pieces withthe point the variable reaches after the transition from the

different slopesk, andk, (k;k,>0) must be distinguished chaotic behavior to the_ determinisjcic one. The vari_aQIQs
in a potential profile. In the case of the potential prof2g, ~ random, and characterized by a distributio(xo), which in
they are the middle and the lower linear pieces. the general case is defined by the particular model of the

(2) The effect arises if the slopguye Of the lower piece chaotic system. Followinfil8], as the first approximation to

is more then the slople,ppe; Of the neighboring upper piece. the r(_eal distribution, we will consider the uniform probability
For the above castoye=Km andKppe=Ke - density
(3) The effect manifests itself maximally if diffusion
starts from the point located on the boundary of these two
pieces.
(4) This effect is strongefi.e., the maximal value of o
MFPT T(Xq,D) is the greatdrthe more difference there is in then the APLT (D) will be
the slopes of the pieces.e., the lesK=k./k), and the
more the relative value=/.//, of the upper piece. — 1 (*m
(5) The shape of the part of the potential profile, which is T(D)=(T(x0.D))= Tf T(xp)d%. (10
. . . - mJ —X
located behind the upper piece, influences the characteristics m
of the effect inconsiderably. In the case of the potential pro-, . . .
file (2) this part is located at the interval X, <x<—/. Itis necessary to take into account that if

D*~U.+U,,,

1
w(XO):Mv XOE[_XmIXm]; (9)

exp(2|U(xq) —U(—x,)|/D)>1, (12)
I1l. INFLUENCE OF THE EXTERNAL NOISE

ON THE INTERMITTENT SYSTEMS i.e., if the noise intensitp is small, then one can neglect the

The main conclusions obtained by analysis of the diffu-S€cond term in Eq(3). However, if we consider an initial
sion in the model piecewise linear potential profiles are usedistribution similar to Eq(9) (wherex, distributed over the
ful, when the diffusion in smooth potential profiles typical of Whole interval[ —xp,Xn]), then we can not neglect by the
the real physical systems is studied. Let us consider, for insécond term in Eq(3), as was done in Ref18]. _
stance, the influence of the external noise on an intermittent Unfortunately, the solution of the FRE) for the potential
chaotic system. It is well knowtsee, e.g., Ref§12,17-19, functions(8) is unknown. Therefore the only way to define
and references thersithat the intermittent system is chaoti- the exact value of the MFPT(x,,D) for potential(8) is by
cally switched under the constant external parameters bdiSing the integration expressi¢8), which can be evaluated
tween two regimes: laminar and chaotic. One may say thaf this case only numerically. In this situation the prelimi-
under intermittency the laminar phase of the system becomd®ry analysis of this problem with the help of the model
unstable. potentials has special interest.

The main characteristic of the intermittency is the average L€t us consider the potential profif8). In such a smooth
path length APL) or, in other words, average duration of the Potential one can also distinguish the three pieces with diff-
laminar regime. In this section we consider the influence ofrent characteristic slopes. One piece is located redd,
the external noise on the APL for the type 1 intermittency,where the influence of the second terax” in Eg. (8) is not

which arises, for example, in a logistic map considerable. Therefore the characteristic slope of this piece
is equal to— A. With the growth of|x| the influence of the
Xn+1=F (X, R)=Rx,(1—X,) (7) second term increases and becomes dominant. Thus two

margin pieces with larger characteristic slopes appear. Con-

under R>R.=1+ 8. This problem can be expressed in sequently, the effect of the noise induced increase of MFPT
terms of Brownian motion, and the behavior of the dynami-should take place in this system.
cal system can be described by the Langevin equatign In order to obtain information on the main characteristics
with the potential describing the unstable stg&,17-19. of this effect, we can approximate the smooth potential pro-
The view of the potential profilaJ(x) is defined by the file (8) to the piecewise linear on@). Because the first term
function F(x,,R). in potential(8) is linear, we need to define how to approxi-

The following potential profile describing the unstable mate the second term Bx* only. From the viewpoint of the
state corresponds to the type 1 intermittency: considered effect, the main feature of this term is that, under
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|x|</., we can neglect it, and undéx|>/" it becomes

significant. Let/ . be the point where both terms are equal:

A/ .=B/Z. Then we can propose the following way to re-
place the functiorBx* by the three linear pieces:

V4

_m/ (X+/0), 7/ c<X<—Xm
m ~C
Bx*—G(x)=¢ 0, — <X/,
BZ
Xm— /(X o) LXK
(12)

The slope of the linear pieces undég<|x|<x,, is chosen
to satisfy the conditiorG(*x,,) = = Bx;, and the condition
of continuity of G(x) at the points|x|=/. This approxi-
mation assumes that, undég=(A/B)Y@ D>x_ one can
neglect the second term.

N. V. AGUDOV

T.(0.8,d)
T,(0.8,0)

int

3.5

0.8 1

FIG. 4. The dependence of the relative MFPT across the bound-
aries — X, andx,, for the potential profilg8) on the dimensionless
noise intensityd=D/2BxZ, underm=Bx% /A=5 and the initial
conditionxy= 0.8, .

Thus, taking into account the first term, we obtain the

following piecewise linear potential profile, which models
the initial smooth oné€8):

U(Xx)=—Ax—G(X). (13

For this potential profile the dimensionless parameters—
relative slopeK and the relative length. of the central
piece—are as follows:

miz-1_1

r.nz/(zf 1) + ml/(zf 1) _

K(m,z)= , (14

1

L(m,Z)=m, (15

wherem=Bx% Y/A is the dimensionless parameter charac-d=D/2BX;, are plotted undeX,=0.8 (xo=

terizing the shape of the initial potential profi(8), which
can be represented as follows:

2Uint(x)

Uin( X) = D

=—(X/m+X?*/d, (16)

where X=x/x,, is the dimensionless coordinate, arnd
=D/2BX, is the dimensionless noise intensity.
Now, when we know how the parametd¢sandL of the

the

T*. Thus we may conclude that the variation of the param-
eter m cannot have a considerable affect on the maximal
value T* (x,) of the MFPT.

Let us consider the influence of parametem T* (xg). It
follows from Eqgs.(14) and(15), that the relative slope of the
Central pieceK is decreased, and its relative widthis in-
creased with the growth & In accordance with the conclu-
sions of Sec. Il, this should lead to an increasersd{x,),

e., the variation of the parameter affects the maximal
MFPT T*: the morez is, the moreT* is.

All these conclusions of the qualitative analysis are con-
firmed by numerical calculations of the integral expression
(3) for the approximated smooth potential profil&6). In
Fig. 4 the dependencies of the dimensionless value

Tint(Xo,d)/Tini(Xo,0) on the dimensionless noise intensity
0.8, andm
=5 for dn‘ferent values of. One can see that the maximal
value of the relative MFPT is increased with the growtlzof

Note that the influence of initial conditions on the MFPT
in the case of a smooth potential profile is not absolutely the
same as in the case of a piecewise linear one. The maximal
value T;(Xo) is not observed undeX,= P, which is the
boundary point of the two pieces, but undex X,<1: the
more X is, the moreT;(X,) is. This is explained by the
fact that, undeX> /' /xm P, the potential profil€16) can

piecewise linear potential profile depend on the dimensionbe replaced by the linear one only conditionally. It is evident
less valuesn andz defined by the shape of the approximatedthat in every pointX=2X, of the real potential profilé¢16),

smooth potential profile$8) and (16), we can analyze the
dependencé@(xq,D) qualitatively for the real potential, and
investigate how the variation of the parametersandz in-
fluences the maximal value of the MFPT:

maxT(Xq,D)}=T*(Xo).
D

As follows from the conclusions of Sec. I, the less the

relative slope of the central piede(m,z) is, i.e., in accor-
dance with Eq.(14), the greater the parameten is, the
greater the maximum of MFPT* (x,) is. However, on the
other hand, it follows from Eq(15), that with an increase of
m, the relative width of the central piede(m,z) is de-
creased. As discussed in Sec. Il, this leads to a decrease

and especially undeX,>/7 /Xy, the relative slope on the
left from X, is less than on the right from this point, and the
greaterX, is, the greater the difference. Therefole,(Xo)
increases with the increase X,

Thus the effect of the increase of the MFPJ(Xq,D) by
the external noise takes place for the potential profi®s
and(16), and can be considerable. It is defined mainly by the
initial conditions and by the value characterizing the steep-
ness of the potential profile, while the influence of the pa-
rameterm characterizing the relative contribution of the lin-
ear term in Eq(16) is not considerable.

Let us consider now the dependence of the ARID) on
the noise intensity In accordance with E0), in order to

atain the APLT(D) we must averagd (Xy,D) on initial
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T . . bistability is studied. The second type of potential profile of
— an unstable state is symmetric, and appears when we con-
sider the soft regime of the excitation of oscillatéesg., the
so-called laser mod¢l,6]) or phase transitions of the second

1.015 / s order [5,13],
1010 e m=7

1.025

1.020 -7

— 4
1005 | ¢ Z U,(x)=—AX, (18
A where z=2n [U,(x)— —» when x— *%]. The unstable
FIG. 5. The dependence of the maximal APL0) on the pa- state in this case is located at the interwal[ — X, , Xm]- _
rameterz of potential profile(8) underm=5 and 7. The decay timél;(xo,D) of an unstable state of the first

kind is the MFPT across the boundaxy;:

conditionsx,. If we average the expression f6(xqy,D) cor- 2 (x ;
responding to the model potential profilE3), we obtain the Ty(X0,D)= _f meu1<§)f e U1lPdedy. (19)
APL T(D), the derivative of which iddT(D)/dD<0 for D Jx -

any D, K, andL. However, if we calculate the APL corre-
sponding to the smooth potential prof{® numerically, we
find that there is a maximum of (D) under someD*
>0. It is evident that the difference in the behavior of the
APL’s with the increase in the noise intensity for the model

X

As mentioned before, it coincides with the above considered
decay time(3) in the intervalx e [ — X, X,] under condition
(11). Thus the results of the analysis presented in Sec. Il are
applicable under small noise intensyfor the first kind of

tential file(13) and for th th oné®) lained unstable state considered in this section. Therefore, we can
potential profi and for th€ smooth on) IS expaine conclude that the decay time of this unstable state can be

by the different dependencies of the MFPTTéx,,D) and .increased by noise. The effect is greater the clagés to x,,

Tin(X0,D) considered above for these potentials on the ini-, 4o greatez is.
tial conditionsxg.

_ In addition, using the method proposed by Malakhov in
_ The dependence of the maximal vallig, of APL (10)  Ref.[30] we can find the following expansion of the decay
[Ti=maxXT;(D)}] on the parameters of the potential pro- time (19) in terms of the noise intensity:

file is similar to that of MFPTT}(X,) considered above: the ]

increase of the parameterleads to the increase of};, T1(Xo,D)=J’ y(v)dv+EE[Gl(X0)—G1(L)]

while the influence of the parameten is less important. Xo 22

However, undez>7 the valueT, becomes a constant not

dependent orz, and comes out on a level which does not +

D
. . — 2
exceed 3—4 % in comparison wifh;,(D=0). The depen-

2 L 1/D 3
J Y(YY’)'dU‘FE E) [G3(Xo)
Xo

denceT_i’;t(z) for some values of is presented in Fig. 5. D\* (L N
Thus we may conclude that the effect of the increase of ~Ga(LIF| 5 fxoy[y(y(yy )V )dot--
the APL by the external noise exists, and can be essential for

the some initial distributions(xg). On the other hand, for (20)
the considered uniform distributio®), which is typical for

the logistic map, this effect is inconsiderable. It follows from where

the above analysis, that the effect will be stronger, if we take Gy(v)=Yy?
the initial distributionsw(x,), which have a maximum at 0 ’
<Xo<Xm. The valueT}, will be greater, the closer this Gs(v)=y—(y")2+2(yy")'], (21)

maximum to the boundary,,.
y=y(v)=—1U1(v).
IV. INFLUENCE OF THE EXTERNAL NOISE . . . . . . .
ON THE BIFURCATION TIMES Series(20) is valid for a potential profile of the first kinlq.
(17)] underA>0 only. The first term in Eq(20) is the time
In this section we consider states of the dynamic systemsf escape from the interval, when noise is absent. It is easy to
which lost their stability due to the quick change of the ap-see from Eq.(21) that the second term is positive for any
propriate bifurcation parameters. There are two types of poz>1, if —x,,<Xy<Xq,. Thus it follows from Eq(20), that if
tential profiles, which correspond to such states. The first onghese conditions are fulfilled, the noise increases the decay

is the same as E@8), i.e., time of the unstable state described by the potential profile
av.
U1(X)=U;pu(X) = —Ax—BX?, (17) Let us now consider a potential profile of the second kind
[Eq. (18)]. If the system is initially in a state corresponding
z=2n+1,n=123..., A=0, B>0, U;(x)—+ under exactly toxo=0, then evidently the effect of the increase of

X— —o, andU(x)— — o underx— + . The unstable state the MFPTT(0,D) by noise cannot appear, because, in this
of the system in this case is supposed to be at the intervalase, when the noise is absen{0,0)=oc. However, if Xy
xe[—,Xy,] (see, e.g., Refd10,15,18). This kind of po-  #0, thenT(x.,0) is a finite value, and the effect should take
tential appears, for example, when the phenomena of opticgllace, since, in the potential profi{&8), one can distinguish
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T,00.8.d) supposed to have a deterministic character. That is why the
. T,(0.8,0) MFPT's for initial conditions located far from the region
whereU’ (x)~0 were investigated only superficially. It fol-
1.3 lows from the above analysis that, if we take the initial con-

ditions just in these regions, where the regular force is
strong, the noise can increase the decay time.

V. CONCLUSION

In this paper the effect of the noise enhanced stability of
unstable states was shown to appear in various physical sys-

1.05 tems, described by different kinds of potential profiles. When
d this effect takes place, the dependence of the decay time on
0 0.2z 0.4 0.6 0.8 the noise intensity has something of a resonant character, and

. - Ok . T
FIG. 6. The dependence of the MFPT across the boundarie!S1€ IS @ noise intensiy - D for which the decay tme is
—Xm andx, on the dimensionless noise intensity for the potential Xl ' xamp . p_ ysl y w :
m w2 _ effect can appear was considered in Rat].
U,=—Ax* underxy= 0.8y, . " .
The general conditions under which the effect appears as

regions with different characteristic slopes: the first one isformulated in Sec. Il are useful for a preliminary analysis of

nearx~0 with a smaller slope, and the other one is near the effect in various dynamic systems. The effect may ap-

with a larger slope. In accordance with the conclusions of:&?gn'fvtvnge'ﬁ;uhzc;g OJI;TefcI)Br::%V\QIas?ropr?rtli(r:lleccs)?rt;g%w \t/\t]ifh
Sec. Il, the effect of the increase of the MFR{Xq,D) by 9 9 9 P

. - the random one. Therefore, the influence of the noise on the
noise takes place in such a system. escape time from these regions can be essential as well. The
In Fig. 6 the plot of the relative MFPTT,(Xy,d)/ ape . -9 . L
) . . : / periodic force introduced in the systems considered in Refs.
Ty(Xo.d) versus the dimensionless noise intensity

—D/2Axt is presented. This plot is calculated using E3). [23-26 cannot be the only cause of the noise enhanced sta-

_ _ . . : bility of the unstable states, because in the present paper, this
underXo=0.8 (xo=0.8y,) for the potential profild18) with effect is shown to appear without the periodic drive.

.222' The decay time of th'.s unstable state is feen to be The above analysis does not take into account that the
increased by the external nhoise by more than 25%. Brownian particle can return to the interval under consider-
The unstable state dgscnbed bY the _poteptlal profie ation after it has crossed the boundary once. This restriction
undgrzzz has special interest, since in this case the dyis due to the use of the first passage time method. Further
namic system governed by E€) is linear, and a further analysis, free from this limitation, would be very useful. Fi-

analysis of the effect in this system should not meet amﬁally, it must be pointed out that in spite of the numerical

considerable difficulties. As mentioned in Sec. |, the deca L " .
g L . ! . resen her rovidin ron nfirmation of th
time of these states was studied in the literature eddig+ Yests presented here, providing strong co ation of the

. - analytic results, experimental verification of the effect would
17]. However, the effect of the noise enhanced stability wag . vétry desirable P

not detected. This was because the influence of initial condi-
tions on the decay times was not investigated in much detail.
In the above works the scaling methods were used to obtain
the time characteristics of the decay. These methods suppose The author is very grateful to Professor A. N. Malakhov
that the noise influences the decay mainly in the region of thand Dr. B. Spagnolo for their interest in this work, helpful
potential profile U(x) where the regular forceF(x)= discussions, and support. This work was supported by the
—U’(x) is minimal; e.g., for potentia(18) it is nearx=0. Russian Foundation for Basic ReseafEmoject No. 96-02-
Beyond this region the diffusion of the Brownian particle is 16772-a.
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