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Noise delayed decay of unstable states

N. V. Agudov
Radiophysical Department, State University of N. Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603600, Russia

~Received 18 July 1997!

The present paper is concerned with transient phenomena near the instability points of dynamic systems. The
problem of decay of unstable states is investigated in the framework of the model of overdamped Brownian
motion. It is shown that in many physical situations the additive noise can increase the decay time of unstable
states, in contrast with accepted notions. The conditions for this effect are studied in detail. Physical examples
are considered.@S1063-651X~98!04203-2#

PACS number~s!: 02.50.Ey, 02.50.Fz, 64.60.Cn
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I. INTRODUCTION

Time characteristics of the decay of unstable states
appear in various dynamical systems have been studie
many works~see Refs.@1–19#, and references therein!. Fol-
lowing from these works, in this paper, the process of
decay is considered within the model of overdamped Brow
ian motion in potential fields. The coordinatex of the
Brownian particle is supposed to obey the following Lang
vin equation with the additive noise source:

dx

dt
52

dU~x!

hdx
1j~ t !, ~1!

whereU(x) is potential,j(t) is the Gaussian white noise
^j(t)&50, ^j(t)j(t1t)&5Dd(t), D is the noise intensity,
and h is the viscosity, which further can be taken equal
unity. In this paper the potential profilesU(x), which have
no local minima, are considered. Such potential profiles
scribe the unstable states of dynamic systems. The d
time of the states is defined as the mean first passage
~MFPT! of the Brownian particle across given boundarie
This approach to define the decay time of the unstable st
is widely used, because the mathematical method for obt
ing the moments of FPT distribution is well developed@20–
22#. The analysis carried in Refs.@11–17# by use of the
MFPT method shows that the decay time always decre
with noise intensity. In other words, the noise was shown
accelerate the decay of any unstable state.

At the same time in the work of Hirsch, Huberman, a
Scalapino@18#, the dependence on noise intensity of the d
cay time of an unstable state was revealed~analytically and
numerically! to have something of a resonant character: w
the growth of the noise intensityD, the decay time also
grows in the beginning, then reaches a maximum, and
creases till zero underD→`. However, the increase in th
decay time obtained in Ref.@18# was not large~less than
1%!. Moreover, in the work of Landa and Stratonovitch@19#,
some mistakes in the theoretical part of Ref.@18# were
571063-651X/98/57~3!/2618~8!/$15.00
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pointed out and, as in the above mentioned works, an
crease in the decay time with noise intensity was not
tected. Thus the problem has remained unsolved.

On the other hand, the effect of the noise enhanced
bility of the unstable states was observed recently for s
tems driven both by stochastic and periodic forces@23–26#.
However, these works explain the effect by the influen
only of the periodic force.

The present work shows that the decay time of the
stable state under some conditions can be increased co
erably by the external noise. In other words, the exter
additive noise, in contrast to the usual notions@4–17,19#, can
delay the decay of the unstable state.

The results presented here are a further development
generalization of the approach proposed in Ref.@28#. In that
work the simplest model of a piecewise linear potential p
file, which leads to the effect of the delay, was considered
addition to Ref.@28#, the influence of the potential profile
shape and initial conditions on the effect is studied in
present work. For this, the decay times of unstable sta
described by the more complex potential profiles~piecewise
linear and smooth! are considered. Section II is concerne
with an analysis of the decay time of the unstable state
scribed by a piecewise linear potential profile consisting
three linear parts. The general conditions under which
noise enhances the stability of the unstable state are for
lated. In Secs. III and IV, some physical examples are d
cussed. In these sections we consider smooth potential
files corresponding to the real systems. Section III is devo
to the influence of the external noise on intermittent chao
systems. In Sec. IV we study the influence of noise on
bifurcation transitions.

II. DECAY TIME OF THE UNSTABLE STATE
DESCRIBED BY THE PIECEWISE LINEAR

POTENTIAL PROFILE

Let us consider the following potential profile consistin
of three linear partsxP@2xm ,xm# ~Fig. 1!:
2618 © 1998 The American Physical Society
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U~x!5H 2km~x2l c!2kcl c , 2xm52l m2l c,x,2l c

2kcx, 2l c,x,l c

2km~x1l c!1kcl c , l c,x,xm5l c1l m ,

~2!
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wherekc ,km.0 are the slopes of the central and two m
ginal linear intervals of the profile, andl c and l m are the
lengths of these intervals. Ifkc ,km.0, this profile has no
horizontal pieces, i.e., it describes an unstable state.

In accordance with Eq.~1!, if the noise is absent, th
Brownian particle initially located at some pointx0P
@2xm ,xm# will slope down to the boundaryxm , and will
reach it in timeTm(x0). If there is noisej(t) in the system,
the particle is subjected to random pushes; then the poss
ity of leaving the interval through the upper boundary a
pears, and the timeT̃(x0) of the escape from the interva
becomes random. Let the decay time of the unstable stat
the MFPT^ T̃(x0)&[T(x0 ,D) of the Brownian particle ini-
tially located in the pointx0 across the boundaries of th
interval @2xm ,xm#.

To obtain the MFPT, one can use the well-known formu
@20,22#

T~x0 ,D !5
2

DF E
x0

xm
eu~z!E

2xm

z

e2u~f!df dz

2

E
2xm

xm
eu~z!E

2xm

z

e2u~f!df dz

E
2xm

xm
eu~z!dz

E
x0

xm
eu~z!dzG ,

~3!

where u(x)52U(x)/D is dimensionless potential profile
Also one can use the method proposed in Ref.@27#, which is
based on first obtaining the Laplace transform of the solu
of the Fokker-Planck equation~FPE! for the probability den-
sity W(x,t) corresponding to Eq.~1!:

FIG. 1. The piecewise linear potential profile~2!.
-

il-
-

be

n

]W~x,t !

]t
5F ]

]x

dU~x!

dx
1

D

2

]2

]x2GW~x,t !. ~4!

Using one of the above mentioned methods, one can
tain an exact expression for the MFPTT(x0 ,D), which un-
der low noise intensity, when exp(2bc)!1 and exp(2bm)
!1, wherebc54kcl c /D, bm52kml m , and l m5xm2l c
~see Fig. 1!, will have the following view:

Q~X0 ,D ![
T~X0 ,D !

Tm
5H Q l~X0 ,D !, 21,X0,2P

Qc~X0 ,D !, 2P,X0,P

Q r~X0 ,D !, P,X0,1
J

20~e2bm!20~e2bc!, ~5!

where

Q l~X0 ,D !512X0~L11!2L12K21L1
2L

bc
~22K2K21!

2S 212K21L1
2L

bc
~22K2K21! D

3e2bm~L11!~11X0!,

Qc~X0 ,D !511K21L2K21~L11!X01
2L

bc
~12K !

1
2L

bc
~12K21!e2bc@11X0~11L21!#/2,

Q r~X0 ,D !511L2~L11!X01
2L

bc
~12K !

3e2bm@X0~L11!2L#.

The new values introduced here are as follows:L5l c /l m is
the relative width of the central piece,K5kc /km is the rela-
tive slope of the central piece,X05x0 /xm , P5L/(L11),
and timeTm5l m /km . The dependence of the decay time
the unstable stateT(X0 ,D) @Eq. ~5!# on the noise intensityD
is contained in the valuesbm ,bc;1/D that characterize the
dimensionless height of the two linear parts of the poten
profile ~2!. It follows from Eq. ~5! that if D50 (bm5bc
5`), thenT(X05P,0)5Tm . This means thatTm is the time
of the descent of the particle from the pointx05l c to the
boundaryxm5l c1l m on the right, marginal piece of poten
tial profile ~2!, of which the longitude isl m and the slope is
km .

First of all, it is necessary to note that the decay time
the unstable state~5! can be an increasing function of th
noise intensity. As one can easily see from Eq.~5!, if

K,1, 2P,X0,1,
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2620 57N. V. AGUDOV
the derivative]T(X0 ,D)/]D.0. On the other hand, it fol-
lows from the exact expression forT(X0 ,D) ~which we do
not adduce here, because it is huge! that under largeD, when
exp(2bc), exp(2bm);1, the MFPT decreases as 1/D. Con-
sequently under some noise intensityD5D* , the MFPT has
a maximumT(X0 ,D* )5T* ~see Fig. 2!.

Thus, the results obtained@Eq. ~5!# allow one to see the
effect of the noise enhanced stability of the unstable st
This effect was observed in Ref.@28# for a more simple kind
of potential profile, and under fixed initial conditions.

In order to understand better how this effect appears
us consider the system which is governed by Eq.~1!, where,
instead of the random forcej(t), there is ad function with a
random amplitudea:

ẋ52
dU~x!

dx
1ad~ t !.

In such a system the Brownian particle undergoes the o
random push at the momentt50. It can easily be shown tha
the action ofd impulse leads to the shift of the initial pos
tion of the particle on the distancea. Let the distribution of
the amplitudeW(a) be the even function. For example, on
may take

W~a!5 1
2 d~a1a0!1 1

2 d~a2a0!.

Initially, let this particle be at the pointX05P (x05l c), i.e.,
at the boundary of the two low linear pieces of potent
profile ~2! ~see Fig. 1!; the amplitude of the impulse does n
exceed the lengths of these pieces:a0,l m , a0,l c . In this
case, ifa52a0 ~at the momentt50 the particle is shifted
on the distance2a0), then the escape time from the interv
is equal:

t~2a0!5
a0

kc
1

l m

km
.

If a5a0, then

t~a0!5
l m2a0

km
.

FIG. 2. The dependence of the relative MFPT for the piecew
potential profile~2! on the dimensionless noise intensityd51/bm

underK50.6, L510, andP50.9 (l c50.9xm).
e.

et

ly

l

Consequently, the average escape time from the interva

^t~a!&5E
2`

`

t~a!W~a!da5Tm1a0S 1

kc
2

1

km
D , ~6!

whereTm5t(0)5l m /km @as in Eq.~5!#. It follows from Eq.
~6! that, underkc5km (K51), the random push does no
effect the average escape time. Underkc.km (K.1), the
average escape time decreases with the increase in the
plitude a0, and underkc,km (K,1) this time increases
with the increase ina0, i.e., the greater the amplitude of th
d impulse, the longer the time the particle stays within t
interval.

As it was shown, for example, in Ref.@29#, the com-
pletely random process can be represented as a superpo
of thed impulses. Therefore, it is evident that the appeara
of the effect of a noise induced increase of the unstable s
decay time in the system described by Eq.~1!, as in the
above mentioned example, is due to the nonlinearity of
potential profile. If the particle is on the upper and less tilt
(kc,km) piece of the profile, then it is delayed there for
long time. This leads to an increase of the average esc
time from the interval. In accordance with this, the less
relative slopeK5kc /km , and the more the relative lengt
L5l c /l m of this piece, the greater the maximum of th
MFPT. This qualitative conclusion is confirmed by Eq.~5!.

Let us now discuss the influence of the initial condition
The plot T(X0 ,D)/T(X0,0) for the different valuesX0,
drawn in accordance with Eq.~3!, is presented in Fig. 2. It
follows from Eqs. ~3! and ~5! that the maximal relation
T(X0 ,D)/T(X0,0) is reached under the some noise intens
D5D* , if the diffusion is started from the pointx05l c
(X05P), which is located on the boundary of the two lowe
pieces of potential profile~2!.

It must be mentioned that one can come to the same c
clusion if one considers diffusion with arbitrary initial con
ditions in a model potential profile consisting only of tw
linear pieces~Fig. 3!. This potential was considered in Re
@28#. It can be obtained from the potential profile~2!, if we
remove the upper piece atx,2l c . If we take the arbitrary
initial conditionsx0 in the problem with such a ‘‘shortened’
potential, we obtain the expression for the MFPTT̂(X0 ,D)
which coincides with Eq.~5! under the small noise intensit
D @when exp(2bc), exp(2bm)!1#. Taking into account the
fact that the effect of the increase of the MFPT by noise
observed under low noise intensity, we may conclude t
the piece of the potential profile underx,2l c does not

e

FIG. 3. The piecewise linear potential profile considered in R
@28#.
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57 2621NOISE DELAYED DECAY OF UNSTABLE STATES
influence the main characteristics of the effect. Thus, if o
changes the slope and the length of this piece arbitrarily
will not influence the characteristics of the effect.

The value of the noise intensityD* corresponding to the
maximum value of MFPT approximately may be estima
as follows:

D* 'Uc1Um ,

whereUc5kcl c , Um5kml m . To obtain the exact expres
sion for D* is extremely difficult, because of the mathema
ics. Thus one can distinguish the following main features
the effect of the noise enhanced stability of unstable sta

~1! In order for the effect to arise, at least two pieces w
different slopesk1 and k2 (k1k2.0) must be distinguished
in a potential profile. In the case of the potential profile~2!,
they are the middle and the lower linear pieces.

~2! The effect arises if the slopeklower of the lower piece
is more then the slopekupper of the neighboring upper piece
For the above case,klower5km andkupper5kc .

~3! The effect manifests itself maximally if diffusion
starts from the point located on the boundary of these
pieces.

~4! This effect is stronger@i.e., the maximal value of
MFPT T(x0 ,D) is the greater# the more difference there is i
the slopes of the pieces~i.e., the lessK5kc /km), and the
more the relative valueL5l c /l m of the upper piece.

~5! The shape of the part of the potential profile, which
located behind the upper piece, influences the characteri
of the effect inconsiderably. In the case of the potential p
file ~2! this part is located at the interval2xm,x,2l c .

III. INFLUENCE OF THE EXTERNAL NOISE
ON THE INTERMITTENT SYSTEMS

The main conclusions obtained by analysis of the dif
sion in the model piecewise linear potential profiles are u
ful, when the diffusion in smooth potential profiles typical
the real physical systems is studied. Let us consider, for
stance, the influence of the external noise on an intermit
chaotic system. It is well known~see, e.g., Refs.@12,17–19#,
and references therein! that the intermittent system is chaot
cally switched under the constant external parameters
tween two regimes: laminar and chaotic. One may say
under intermittency the laminar phase of the system beco
unstable.

The main characteristic of the intermittency is the avera
path length~APL! or, in other words, average duration of th
laminar regime. In this section we consider the influence
the external noise on the APL for the type 1 intermitten
which arises, for example, in a logistic map

xn115F~xn ,R!5Rxn~12xn! ~7!

under R.Rc511A8. This problem can be expressed
terms of Brownian motion, and the behavior of the dynam
cal system can be described by the Langevin equation~1!
with the potential describing the unstable state@12,17–19#.
The view of the potential profileU(x) is defined by the
function F(xn ,R).

The following potential profile describing the unstab
state corresponds to the type 1 intermittency:
e
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U int~x!52Ax2Bxz, ~8!

where z52n11, n51,2,3, . . . , A.0, and B.0. For the
case of the logistic map~7!, A5Rc2R, B568.5, andz53.

The diffusion of the Brownian particle in the potenti
field ~8! in the intervalxP@2xm ,xm# ~the valuexm should
satisfy A1zBxm

z21!1) corresponds to the laminar phas
The escape of the Brownian particle from the interval cor
sponds to the transition of the system into the chaotic regi
Thus the MFPT across the boundaries@2xm ,xm# character-
izes the APL@18#.

In the problem of the intermittency, the initial pointx0 is
the point the variablex reaches after the transition from th
chaotic behavior to the deterministic one. The variablex0 is
random, and characterized by a distributionv(x0), which in
the general case is defined by the particular model of
chaotic system. Following@18#, as the first approximation to
the real distribution, we will consider the uniform probabili
density

v~x0!5
1

2xm
, x0P@2xm ,xm#; ~9!

then the APLT̄(D) will be

T̄~D !5^T~x0 ,D !&5
1

2xm
E

2xm

xm
T~x0!dx0 . ~10!

It is necessary to take into account that if

exp~2uU~x0!2U~2xm!u/D !@1, ~11!

i.e., if the noise intensityD is small, then one can neglect th
second term in Eq.~3!. However, if we consider an initia
distribution similar to Eq.~9! ~wherex0 distributed over the
whole interval@2xm ,xm#), then we can not neglect by th
second term in Eq.~3!, as was done in Ref.@18#.

Unfortunately, the solution of the FPE~4! for the potential
functions~8! is unknown. Therefore the only way to defin
the exact value of the MFPTT(x0 ,D) for potential~8! is by
using the integration expression~3!, which can be evaluated
in this case only numerically. In this situation the prelim
nary analysis of this problem with the help of the mod
potentials has special interest.

Let us consider the potential profile~8!. In such a smooth
potential one can also distinguish the three pieces with d
erent characteristic slopes. One piece is located nearx'0,
where the influence of the second term;xz in Eq. ~8! is not
considerable. Therefore the characteristic slope of this p
is equal to2A. With the growth ofuxu the influence of the
second term increases and becomes dominant. Thus
margin pieces with larger characteristic slopes appear. C
sequently, the effect of the noise induced increase of MF
should take place in this system.

In order to obtain information on the main characterist
of this effect, we can approximate the smooth potential p
file ~8! to the piecewise linear one~2!. Because the first term
in potential~8! is linear, we need to define how to approx
mate the second term2Bxz only. From the viewpoint of the
considered effect, the main feature of this term is that, un
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2622 57N. V. AGUDOV
uxu!l c , we can neglect it, and underuxu.l c it becomes
significant. Letl c be the point where both terms are equ
Al c5Bl c

z . Then we can propose the following way to r
place the functionBxz by the three linear pieces:

Bxz→G~x![5
Bxm

z

xm2l c
~x1l c!, 2l c,x,2xm

0, 2l c,x,l c

Bxm
z

xm2l c
~x2l c!, l c,x,xm .

~12!

The slope of the linear pieces underl c,uxu,xm is chosen
to satisfy the conditionG(6xm)56Bxm

z and the condition
of continuity of G(x) at the pointsuxu5l c . This approxi-
mation assumes that, underl c5(A/B)1/(z21).xm , one can
neglect the second term.

Thus, taking into account the first term, we obtain t
following piecewise linear potential profile, which mode
the initial smooth one~8!:

U~x!52Ax2G~x!. ~13!

For this potential profile the dimensionless parameters—
relative slopeK and the relative lengthL of the central
piece—are as follows:

K~m,z!5
m1/~z21!21

mz/~z21!1m1/~z21!21
, ~14!

L~m,z!5
1

m1/~z21!21
, ~15!

wherem5Bxm
z21/A is the dimensionless parameter chara

terizing the shape of the initial potential profile~8!, which
can be represented as follows:

uint~X!5
2U int~X!

D
52~X/m1Xz!/d, ~16!

where X5x/xm is the dimensionless coordinate, andd
5D/2Bxm

z is the dimensionless noise intensity.
Now, when we know how the parametersK andL of the

piecewise linear potential profile depend on the dimensi
less valuesm andz defined by the shape of the approximat
smooth potential profiles~8! and ~16!, we can analyze the
dependenceT(x0 ,D) qualitatively for the real potential, an
investigate how the variation of the parametersm andz in-
fluences the maximal value of the MFPT:

max
D

$T~X0 ,D !%[T* ~X0!.

As follows from the conclusions of Sec. II, the less t
relative slope of the central pieceK(m,z) is, i.e., in accor-
dance with Eq.~14!, the greater the parameterm is, the
greater the maximum of MFPTT* (x0) is. However, on the
other hand, it follows from Eq.~15!, that with an increase o
m, the relative width of the central pieceL(m,z) is de-
creased. As discussed in Sec. II, this leads to a decrea
:

e

-

-

of

T* . Thus we may conclude that the variation of the para
eter m cannot have a considerable affect on the maxim
valueT* (x0) of the MFPT.

Let us consider the influence of parameterz on T* (x0). It
follows from Eqs.~14! and~15!, that the relative slope of the
central pieceK is decreased, and its relative widthL is in-
creased with the growth ofz. In accordance with the conclu
sions of Sec. II, this should lead to an increase ofT* (x0),
i.e., the variation of the parameterz affects the maximal
MFPT T* : the morez is, the moreT* is.

All these conclusions of the qualitative analysis are co
firmed by numerical calculations of the integral express
~3! for the approximated smooth potential profile~16!. In
Fig. 4 the dependencies of the dimensionless va
Tint(X0 ,d)/Tint(X0,0) on the dimensionless noise intensi
d5D/2Bxm

z are plotted underX050.8 (x050.8xm) and m
55 for different values ofz. One can see that the maxim
value of the relative MFPT is increased with the growth ofz.

Note that the influence of initial conditions on the MFP
in the case of a smooth potential profile is not absolutely
same as in the case of a piecewise linear one. The max
value Tint* (X0) is not observed underX05P, which is the
boundary point of the two pieces, but underP,X0,1: the
more X0 is, the moreTint* (X0) is. This is explained by the
fact that, underX.l c /xm5P, the potential profile~16! can
be replaced by the linear one only conditionally. It is evide
that in every pointX5X0 of the real potential profile~16!,
and especially underX0.l c /xm , the relative slope on the
left from X0 is less than on the right from this point, and th
greaterX0 is, the greater the difference. Therefore,Tint* (X0)
increases with the increase ofX0.

Thus the effect of the increase of the MFPTTint(x0 ,D) by
the external noise takes place for the potential profiles~8!
and~16!, and can be considerable. It is defined mainly by
initial conditions and by the valuez characterizing the steep
ness of the potential profile, while the influence of the p
rameterm characterizing the relative contribution of the lin
ear term in Eq.~16! is not considerable.

Let us consider now the dependence of the APLT̄(D) on
the noise intensity. In accordance with Eq.~10!, in order to
obtain the APLT̄(D) we must averageT(x0 ,D) on initial

FIG. 4. The dependence of the relative MFPT across the bou
aries2xm andxm for the potential profile~8! on the dimensionless
noise intensityd5D/2Bxm

z underm5Bxm
z21/A55 and the initial

conditionx050.8xm .
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57 2623NOISE DELAYED DECAY OF UNSTABLE STATES
conditionsx0. If we average the expression forT(x0 ,D) cor-
responding to the model potential profile~13!, we obtain the
APL T̄(D), the derivative of which isd T̄(D)/dD,0 for
any D, K, andL. However, if we calculate the APL corre
sponding to the smooth potential profile~8! numerically, we
find that there is a maximum ofT̄ int(D) under someD*
.0. It is evident that the difference in the behavior of t
APL’s with the increase in the noise intensity for the mod
potential profile~13! and for the smooth one~8! is explained
by the different dependencies of the MFPT’sT(x0 ,D) and
Tint(x0 ,D) considered above for these potentials on the
tial conditionsx0.

The dependence of the maximal valueT̄ int* of APL ~10!

@ T̄ int* [max$T̄int(D)%# on the parameters of the potential pr
file is similar to that of MFPTTint* (x0) considered above: th

increase of the parameterz leads to the increase ofT̄ int* ,
while the influence of the parameterm is less important.
However, underz.7 the valueT̄ int* becomes a constant no
dependent onz, and comes out on a level which does n
exceed 3–4 % in comparison withT̄ int(D50). The depen-
denceT̄ int* (z) for some values ofm is presented in Fig. 5.

Thus we may conclude that the effect of the increase
the APL by the external noise exists, and can be essentia
the some initial distributionsv(x0). On the other hand, fo
the considered uniform distribution~9!, which is typical for
the logistic map, this effect is inconsiderable. It follows fro
the above analysis, that the effect will be stronger, if we ta
the initial distributionsv(x0), which have a maximum at 0
,x0,xm . The value T̄ int* will be greater, the closer this
maximum to the boundaryxm .

IV. INFLUENCE OF THE EXTERNAL NOISE
ON THE BIFURCATION TIMES

In this section we consider states of the dynamic syste
which lost their stability due to the quick change of the a
propriate bifurcation parameters. There are two types of
tential profiles, which correspond to such states. The first
is the same as Eq.~8!, i.e.,

U1~x!5U int~x!52Ax2Bxz, ~17!

z52n11, n51,2,3. . . , A>0, B.0, U1(x)→1` under
x→2`, andU1(x)→2` underx→1`. The unstable state
of the system in this case is supposed to be at the inte
xP@2`,xm# ~see, e.g., Refs.@10,15,16#!. This kind of po-
tential appears, for example, when the phenomena of op

FIG. 5. The dependence of the maximal APL~10! on the pa-
rameterz of potential profile~8! underm55 and 7.
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bistability is studied. The second type of potential profile
an unstable state is symmetric, and appears when we
sider the soft regime of the excitation of oscillators~e.g., the
so-called laser model@1,6#! or phase transitions of the secon
order @5,13#,

U2~x!52Axz, ~18!

where z52n @U2(x)→2` when x→6`#. The unstable
state in this case is located at the intervalxP@2xm ,xm#.

The decay timeT1(x0 ,D) of an unstable state of the firs
kind is the MFPT across the boundaryxm :

T1~x0 ,D !5
2

DE
x0

xm
eu1~z!E

2`

z

e2u1~f!dfdz. ~19!

As mentioned before, it coincides with the above conside
decay time~3! in the intervalxP@2xm ,xm# under condition
~11!. Thus the results of the analysis presented in Sec. III
applicable under small noise intensityD for the first kind of
unstable state considered in this section. Therefore, we
conclude that the decay time of this unstable state can
increased by noise. The effect is greater the closerx0 is to xm
and the greaterz is.

In addition, using the method proposed by Malakhov
Ref. @30# we can find the following expansion of the deca
time ~19! in terms of the noise intensity:

T1~x0 ,D !5E
x0

L

y~v !dv1
1

2

D

2
@G1~x0!2G1~L !#

1S D

2 D 2E
x0

L

y~yy8!8dv1
1

2S D

2 D 3

@G3~x0!

2G3~L !#1S D

2 D 4E
x0

L

y@y„y~yy8!8…8#8dv1•••,

~20!

where

G1~v !5y2,

G3~v !5y2@2~y8!212~yy8!8#, ~21!

y5y~v !521/U18~v !.

Series~20! is valid for a potential profile of the first kind@Eq.
~17!# underA.0 only. The first term in Eq.~20! is the time
of escape from the interval, when noise is absent. It is eas
see from Eq.~21! that the second term is positive for an
z.1, if 2xm,x0,xm . Thus it follows from Eq.~20!, that if
these conditions are fulfilled, the noise increases the de
time of the unstable state described by the potential pro
~17!.

Let us now consider a potential profile of the second k
@Eq. ~18!#. If the system is initially in a state correspondin
exactly tox050, then evidently the effect of the increase
the MFPTT(0,D) by noise cannot appear, because, in t
case, when the noise is absent,T(0,0)5`. However, if x0
Þ0, thenT(x0,0) is a finite value, and the effect should ta
place, since, in the potential profile~18!, one can distinguish
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regions with different characteristic slopes: the first one
nearx'0 with a smaller slope, and the other one is nearxm
with a larger slope. In accordance with the conclusions
Sec. II, the effect of the increase of the MFPTT(x0 ,D) by
noise takes place in such a system.

In Fig. 6 the plot of the relative MFPTT2(X0 ,d)/
T2(X0,d) versus the dimensionless noise intensityd
5D/2Axz is presented. This plot is calculated using Eq.~3!
underX050.8 (x050.8xm) for the potential profile~18! with
z52. The decay time of this unstable state is seen to
increased by the external noise by more than 25%.

The unstable state described by the potential profile~18!
under z52 has special interest, since in this case the
namic system governed by Eq.~1! is linear, and a further
analysis of the effect in this system should not meet a
considerable difficulties. As mentioned in Sec. I, the dec
time of these states was studied in the literature earlier@11–
17#. However, the effect of the noise enhanced stability w
not detected. This was because the influence of initial co
tions on the decay times was not investigated in much de
In the above works the scaling methods were used to ob
the time characteristics of the decay. These methods sup
that the noise influences the decay mainly in the region of
potential profile U(x) where the regular forceF(x)5
2U8(x) is minimal; e.g., for potential~18! it is nearx50.
Beyond this region the diffusion of the Brownian particle

FIG. 6. The dependence of the MFPT across the bounda
2xm andxm on the dimensionless noise intensity for the poten
U252Ax2 underx050.8xm .
on

s

nd

n.
s

f

e

-

y
y

s
i-
il.
in
se
e

supposed to have a deterministic character. That is why
MFPT’s for initial conditions located far from the regio
whereU8(x)'0 were investigated only superficially. It fol
lows from the above analysis that, if we take the initial co
ditions just in these regions, where the regular force
strong, the noise can increase the decay time.

V. CONCLUSION

In this paper the effect of the noise enhanced stability
unstable states was shown to appear in various physical
tems, described by different kinds of potential profiles. Wh
this effect takes place, the dependence of the decay tim
the noise intensity has something of a resonant character
there is a noise intensityD5D* for which the decay time is
maximal. Another example of the physical system where t
effect can appear was considered in Ref.@31#.

The general conditions under which the effect appears
formulated in Sec. II are useful for a preliminary analysis
the effect in various dynamic systems. The effect may
pear, if the diffusion of the Brownian particle starts from th
region where the regular force is strong in comparison w
the random one. Therefore, the influence of the noise on
escape time from these regions can be essential as well.
periodic force introduced in the systems considered in R
@23–26# cannot be the only cause of the noise enhanced
bility of the unstable states, because in the present paper
effect is shown to appear without the periodic drive.

The above analysis does not take into account that
Brownian particle can return to the interval under consid
ation after it has crossed the boundary once. This restric
is due to the use of the first passage time method. Fur
analysis, free from this limitation, would be very useful. F
nally, it must be pointed out that in spite of the numeric
tests presented here, providing strong confirmation of
analytic results, experimental verification of the effect wou
be very desirable.
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